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From my undergraduate work in computed tomography [1, 2] and cryo-electron microscopy [3, 4]

to my graduate work in statistical genetics [5, 6], I have always had a keen interest in applying

my quantitative skills to biomedical applications. Along the way, several technical challenges stem-

ming from these applications have inspired me to think more generally about methodological and

theoretical problems in statistics. In my PhD, I have investigated ways to extract patterns from

complex data sets while providing replicability guarantees. In particular, I have designed multiple

testing and variable selection methodologies that account for the structure of modern data sets and

the exploration which often goes into analyzing them.

Current Work: Structure and Exploration in Multiple Testing

The data collected in a variety of fields is increasingly rich and complex, which creates novel oppor-

tunities and challenges for statisticians. New vast data sets collected in fields like finance, biology,

astronomy, and social science promise insights about the molecular mechanisms of disease, the

structure of the universe, and everything in between. On the other hand, the scale and complexity

of these modern data sets makes it challenging to unlock these insights. One way of handling this

complexity is to use the data itself to generate hypotheses, scanning for interesting patterns to ex-

amine more closely. While exploratory data analysis is a useful hypothesis-generating tool that has

been in use for decades, it is increasingly important to additionally provide replicability guarantees

for the hypotheses flagged for follow-up. Indeed, the look-elsewhere effect paired with the richness

of modern data sets creates ample room for false discoveries.

I have used multiple testing, and in particular false discovery rate (FDR) control, as a formal

way of encoding replicability. Consider the universe of hypotheses H = (H1, . . . ,Hm) that can be

encoded in a data set D; the goal is to find a subset R∗ of these that are supported by the data.

Given p-values p = (p1, . . . , pm) derived from D, traditional methods to control the FDR—like

the Benjamini-Hochberg (BH) procedure—consider sets of the form {j : pj ≤ t} and choose a

cutoff t∗ ∈ [0, 1] such that the FDR is bounded at a pre-defined level q. On the other hand, the

hypotheses in H might have extra structure (e.g. spatial or graphical), which does not align with

BH’s “exchangeable” treatment of hypotheses. I have developed methods to search for rejection sets

fitting into the context of this structure while preserving FDR guarantees. Moreover, traditional

methods like BH leave no room for data scientists to explore, since modifying the contents of an

FDR-controlling set post hoc is formally prohibited. I have worked on reconciling exploration with

rigorous Type-I error guarantees, bridging the gap between the theory of statistical inference and

the practice of data science.

Next, I outline three of my projects that exemplify how to integrate structure and exploration

into multiple testing.

Controlled variable selection at multiple resolutions

Genome-wide association studies (GWAS), enabled by high-throughput genotyping technology, scan

the genome for associations with a trait or disease of interest. Genetic measurements are made at

the “high resolution” of single nucleotide polymorphisms (SNPs). However, SNPs have correlation

patterns obeying the one-dimensional structure of the genome, making nearby SNPs hard to tell
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apart. They are also structured into larger functional units such as genes. Therefore, SNPs are

often analyzed in groups (“lower resolution”) to facilitate statistical power and/or interpretability.

While traditional GWAS methodology relies on marginal testing, the recently developed knock-

offs methodology [7] provides an attractive alternative. Knockoffs provide a means to test the

more meaningful hypotheses of conditional independence between a response and a set of predictor

variables and provide rigorous FDR control guarantees. Like BH, however, knockoffs do not accom-

modate for structure on the set of variables. For example, the set of significant SNPs returned by

the knockoffs procedure cannot be grouped while retaining the FDR guarantee, since this operation

can inflate the FDR.

This problem motivated me to develop the Multilayer Knockoff Filter (MKF) [5] with my

advisor Chiara Sabatti. The MKF is a variable selection methodology that finds a high-resolution

set of significant variables whose projections into multiple pre-specified lower resolutions control

the FDR at each resolution at given target levels. For example, one might want to control the

FDR at the SNP level and at the gene level. The MKF searches for rejection regions jointly across

all resolutions (similar to the p-filter [8]) and leverages knockoff statistics to measure variable

importance. The principal technical challenge lay in proving FDR control for multiple rejection

sets (one per resolution) that are all coupled together in a complicated way. The key to the proof

was to assume a worst-case scenario where the rejection thresholds at each resolution are chosen

adversarially, and then bound this worst-case FDR by constructing an appropriate exponential

supermartingale and applying the maximal inequality. Surprisingly, the price of this pessimistic

analysis was an extra constant of only 1.93 in the FDR bound.

I applied the MKF procedure to a targeted exome re-sequencing data set to study associations

with HDL cholesterol. Cross-referencing the results with the literature on this well-studied trait,

MKF reduced the number of false positive genes from 5 (out of 11 total) to just 1 (out of 6 total),

at the cost of one extra false negative. I am currently in the process of applying MKF and related

ideas to the exome-wide Finnish Metabolic Sequencing (FinMetSeq) and UK Biobank data sets,

and integrating this methodology into the existing knockoff package in R. I have presented this

methodology to genetics audiences at conferences (including this year at the American Society for

Human Genetics), where it has been well received, including a best student poster award at a

statistical genomics conference in 2017.

Controlling FDR while filtering discoveries

Grouping the elements of a rejection set is just one example of a filtering operation. Many other,

more complicated, filtering operations are also common in data science, especially when hypotheses

are structured. For example, International Classification of Diseases (ICD) codes, used in electronic

health records and insurance claims, have a tree structure reflecting relationships between diseases

(e.g. “pneumococcal meningitis” is more specific than “bacterial meningitis”, so there is an edge

from the latter to the former). In this and other applications involving hypotheses of varying

degrees of specificity, filtering is common to reduce redundancy and improve interpretability of

rejection sets. In the context of ICD codes, for instance, a rejection i ∈ R∗ might be considered

“redundant” if it has a descendant j ∈ R∗. The outer nodes filter [9] might be employed to remove

this redundancy, leaving a set of “distinct” discoveries U∗ ⊆ R∗. Other filters can be more involved

and take the form of software packages.

Like changing the resolution of discoveries, many filtering operations also run the risk of inflating

the FDR. Therefore, applying an FDR procedure followed by a filter is in general a dangerous
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operation. This presents a challenge, especially because a variety of filters may be applied in

practice and it is infeasible to design a new FDR methodology for each filter. To address this

challenge in full generality, I first formalized the concept of a filter as any mapping

F : (R,p) 7→ U , such that U ⊆ R.

The outer nodes filter defined above might be one example of such an F. With this definition, a

reasonable inferential goal is to control the false filtered discovery rate:

FDRF = E [FDP(U∗)] = E [FDP(F(R∗,p))] ≤ q.

In practice, it is often the case that the filter to be applied can be specified in advance. Therefore, in

collaboration with Chiara Sabatti and Marina Bogomolov, I proposed Focused BH [6], an extension

of the BH procedure that accounts for the effect of a pre-specified filter F to control the above error

rate. To prove FDR control, one must account for the interaction of the filter with the dependency

structure of the p-values. In particular, I showed that Focused BH controls the FDR when the

filter F is monotonic filter and the p-values are PRDS (a kind of positive dependence).

I extensively tested Focused BH across a variety of simulation settings, including hypotheses

with tree, DAG, and spatial structures. In the case of tree-structured hypothesis testing with the

outer nodes filter, I demonstrated that Focused BH controls the FDR under weaker assumptions

and is more powerful than Yekutieli’s procedure [9] targeting the same error rate. In the case of

spatially-structured GWAS hypotheses, I showed in simulations that Focused BH controls the FDR

after a clumping filter, while the filter-blind BH suffers a substantial FDR inflation.

High-probability FDP bounds after exploration

In the context of Multilayer Knockoff Filter and Focused BH, note that the operations applied to

the rejection set were required to be specified before seeing the data (pre hoc). In certain cases,

like the ones described above, this is a reasonable assumption. In other cases, it is important for

data scientists to participate in the choice of a rejection set R∗ after seeing the data (post hoc),

leveraging their domain knowledge and intuition. Consider the following scenario: a data scientist

applies BH at level q = 0.05, and it turns out that only two discoveries were made. She then tries

BH at level q = 0.1, which yields ten discoveries. The extra eight discoveries seem promising, so

all ten are reported as significant at FDR level 0.1. While in theory it is clear that this amounts

to “data snooping” and invalidates the FDR guarantee, in practice the expectation that the target

level q is set a priori is not always reasonable.

To allow data scientists to explore their data while retaining replicability guarantees, Aaditya

Ramdas and I have proposed a simultaneous selective inference approach [10]. The user is presented

with a data-dependent “menu” (path) of nested rejection sets

∅ = R0 ⊆ R1 ⊆ · · · ⊆ Rn ⊆ H

with accompanying FDP bounds FDP(Rk), which under p-value independence are simultaneously

valid across k with high probability:

P
[
FDP(Rk) ≤ FDP(Rk) for all k

]
≥ 1− α.

The user can inspect this menu and choose a rejection set whose content and FDP bound is to

her liking, the FDP bound of the chosen set retaining validity despite the user’s data-dependent
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decision. This approach is related to exploratory multiple testing [11], which by simultaneously

bounding the FDP of all subsets R ⊆ H allows the scientist to choose from this exponentially large

menu of options. While this all-subsets approach relies on closed testing, I obtain simultaneous

FDP bounds across a path of rejection sets by studying FDP(Rk) as a stochastic process in k.

At the cost of providing a more modest (though perhaps more focused) menu of options to the

data scientist, I show in simulations that simultaneous selective inference can yield much tighter

bounds on the FDP. Therefore, in terms of power and flexibility, simultaneous selective inference

is a compromise between selective inference (guarantees for one rejection set) and simultaneous

inference (guarantees for all possible rejection sets).

Short-Term Research Agenda: Correlations and Resampling

Much of my work has focused on handling complex structures in the context of multiple testing.

Another kind of complexity in this context that has not been adequately addressed is the issue

of correlation among p-values. It is the easiest to prove results in the unrealistically optimistic

case of independence or in the unrealistically pessimistic case of arbitrary dependence. Aside from

the somewhat mysterious PRDS condition, not too much has been done in the middle ground

between these two extremes. Some of the most promising work in this direction has been based on

resampling. I believe resampling is a powerful methodology to deal both with complex structures

and dependency patterns, and I see several fruitful directions in which to expand these ideas.

Permutation-based false (filtered) discovery rate control

While permutation-based methods were actively developed in the context of the stringent family-

wise error rate (FWER) [12], satisfactory methodology and theory for permutation-based FDR

control is still lacking. I believe that work in this direction could lead to powerful multiple testing

methodology that works under realistic and verifiable dependence assumptions and does not rely

on conservative corrections. A possible place to start is a permutation-based version of Focused

BH I proposed, which while currently lacking theory performed quite well in simulations, boosting

power while retaining FDR control. Exploring this procedure and developing theory for it could

lead to a promising way to account for p-value correlations as well as complicated filters.

Variable selection via resampling

Given a collection of m random variables X1, . . . , Xm and a response variable Y , consider testing

the conditional independence hypotheses Hj : Xj ⊥⊥ Y |X−j for j = 1, . . . ,m. This variable selection

problem is known to be hard, especially in high dimensions. In the “model-X framework” where

we have knowledge of the distribution of X, the conditional randomization test [13] (resampling Xj

from its distribution conditional on X−j) is a simple and elegant way to test conditional indepen-

dence. One might wonder whether it would be possible to modify it to be more robust to its strong

model-X assumption. The conditional permutation test [14] is a step in that direction, though is

still relies fairly heavily on knowing the distribution of X and is even more computationally costly

than the CRT. I would like to improve upon the CRT and CPT to develop a variable selection

methodology that is lighter on computations and assumptions.
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Accelerating resampling-based procedures

One of the biggest drawbacks of resampling-based procedures is their computational cost. Espe-

cially if permutation p-values are subjected to multiple testing corrections, they must be quite

accurate, and therefore require more computation. I would like to work on significantly reducing

the computational burden of resampling-based procedures. Progress in this direction would help

the statistical advantages of these procedures outweigh their computational disadvantages.

Long-Term Research Agenda: Precision Medicine

The sequencing of the human genome in 2001 created high expectations for our ability to understand

the biological mechanisms of human disease, paving the way for better and more personalized

prognosis, diagnosis, and treatment. Nearly two decades later, the promise of “precision medicine”

is still far from reality. My career goal is to move us closer to realizing that promise by tackling

quantitative challenges relevant to biology and medicine. The following are two examples of research

in this direction.

Functional genomics and causality

The emerging field of functional genomics picks up from where association studies leave off: trying

to explain the mechanism by which a given genetic variant leads to a disease. While association

analysis looks for correlations, functional genomics looks for causal explanations. I would love to

contribute to the rapid development of the fields of functional genomics and causal inference to

advance our mechanistic understanding of human diseases. Causal inference is related to what I have

already done since replicability is the hallmark of a causal effect. Moreover, my work on variable

selection is adjacent to causality in that it deals with testing independence while conditioning away

confounders. Testing such conditional hypotheses helps disentangle direct effects of predictors

on outcomes from indirect effects through other predictors. I am interested in exploring these

connections and learning more about causal inference.

Inference from electronic health records

In addition to genomics, another increasingly large source of biomedical data is electronic health

records (EHR). Especially when linked with genomic data, EHR data contain much promise for

medical insights. Given the heterogeneiety and pervasive missingness in EHR data, however, un-

locking these insights presents significant statistical challenges. Moreover, EHR data are highly

structured and thus amenable to analysis with some of the techniques I have already developed.

I am interested in learning more about EHRs and applying my experience with the analysis of

structured data to this rich data source.

Conclusion

The unifying theme of my work is identifying and addressing statistical challenges arising from

biomedical applications. I believe that the best way for me to make a difference in biomedicine

is to collaborate closely with scientists in this domain, pairing my statistical expertise with their

domain knowledge. I am excited to learn from these scientific collaborators as well as from my

colleagues in math statistics, and I hope that standing at the intersection of these two domains will

allow me to achieve my goal of advancing precision medicine.
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