
Programming Best Practices in R

Eugene Katsevich

2023-09-04

Contents
1 Code readability 1

1.1 Example . 2
1.2 Code style . 2
1.3 Code transparency . 2

2 Code safety 3
2.1 Code portability . 3
2.2 Defensive programming . 3

3 Automation and reproducibility 4
3.1 Automate manual operations . 4
3.2 Embrace modularity . 4
3.3 Name constants in your scripts . 4
3.4 Produce results by running entire scripts . 4

4 Managing package dependencies 5
4.1 Namespace conflicts . 5
4.2 Managing package versions with renv . 5
4.3 Best practices . 5

5 Code speed 5
5.1 Vectorization . 6
5.2 Factoring code out of loops . 6

When programming, one often wishes to get to the answer as quickly as possible. However, programming
quickly jeopardizes the correctness and reproducibility of the code that is written. This document lays out a
number of programming best practices to promote the correctness and reproducibility of code, which may
take additional time to master at first but which save time in the long run. This document is geared towards
R programming, though many of the principles presented here are language-agnostic.

1 Code readability
Code readability refers to how easily a programmer can understand and interpret a piece of code. It is an
essential aspect of software development because readable code is easier to maintain, faster to debug, more
collaborative, and less prone to errors. Code readability can be broadly categorized into two main aspects:
code style and code transparency. Code style pertains primarily to the format and presentation of the code.
Code transparency delves deeper into the logic and structure of the code. It refers to how straightforwardly
the functionality, logic, or operations are conveyed.

1

1.1 Example
Consider the following two examples:

Poor code readability:
a = sum(dat[dat[,1]>5 & dat[,2]<10,3])
b = mean(dat[dat[,1]>5 & dat[,2]<10,3])
print(paste('Sum =',a,', Mean =',b))

Good code readability:
Library for data manipulation
library(dplyr)

Analysis parameters
MIN_AGE <- 5
MAX_SCORE <- 10

Extract summary performance metrics for subset of observations
summary_data <- dat |>
filter(age >= MIN_AGE & score <= MAX_SCORE) |>
summarize(

sum_performance = sum(performance_metric),
mean_performance = mean(performance_metric)

)

Print the computed results
cat(sprintf("Sum of Performance: %f | Mean of Performance: %f",

summary_data$sum_performance,
summary_data$mean_performance))

In this section, we will discuss how to write code like that in the second snippet above.

1.2 Code style
Code should adhere to the tidyverse style guide, which includes guidance on the following aspects of code:

• Naming conventions
• Spacing and indentation
• Commenting

You can use the styler package to automatically conform your spacing and indentation to the tidyverse
style guide.

1.3 Code transparency
To write transparent code, follow these guidelines:

• Use tidyverse paradigms as much as possible (e.g. dplyr summaries instead of apply operations)
• Use names, rather than indices, for subsetting (e.g. results["mse", "lasso"] versus results[2,4])
• Use named arguments in function calls, especially with more than one argument (e.g. rbinom(3, 1,

0.5) versus rbinom(n = 3, size = 1, prob = 0.5))
• Put logically related chunks of code together into code blocks, with a comment describing the thrust of

that code block.

2

https://style.tidyverse.org/index.html
https://styler.r-lib.org/

2 Code safety
Code safety entails practices that proactively guard against, identify, and handle programming errors or
unwanted outcomes.

2.1 Code portability
One of the challenges in R programming, especially when sharing your code with others or transferring
it between different machines, is ensuring code portability. Code portability ensures that your R script or
project can be executed seamlessly in different environments without any hitches. Here’s how to enhance the
portability of your R code:

Avoid hardcoded paths. Hardcoding paths, such as C:/Users/JohnDoe/Documents/mydata.csv, can
break the code when run on a different machine or if files are moved. Instead, always aim to use relative
paths or dynamic paths that adjust based on the current directory. This ensures that as long as the directory
structure remains consistent, the paths will always be correct.

Use R Projects. R Projects, a feature of RStudio, allow you to maintain a consistent working directory
regardless of where the project is located on the machine. When you open an R Project, RStudio sets the
working directory to the project’s root directory. This allows you to use relative paths effectively. To start an
R Project, simply choose File > New Project in RStudio.

2.2 Defensive programming
When writing a function, the goal is for the function to either produce the intended output or an informative
error message for any given input. Since a wide variety of inputs are possible, defensive programming is
required to achieve this. Defensive programming in R entails anticipating potential issues, pitfalls, or mistakes
in the code and implementing strategies to handle them gracefully.

Input validation: One of the most common tactics in defensive programming is input validation. Before
processing, check if the provided inputs are valid or in the expected format. For instance, if a function expects
a numeric vector, verify the input type before proceeding.
compute_mean <- function(data_vector) {

if (!is.numeric(data_vector)) {
stop("The input data_vector must be numeric.")

}
return(mean(data_vector))

}

Use informative error messages: When an error condition is detected, provide a clear and informative
error message. This not only prevents silent failures but also helps users or developers identify and fix the
problem.
safe_divide <- function(numerator, denominator) {
if (denominator == 0) {
stop("Error: Division by zero is not allowed.")

}
return(numerator / denominator)

}

3

3 Automation and reproducibility
To ensure the robustness and reliability of your analyses, strive for automation and reproducibility. This
approach ensures your work remains consistent and easily repeatable.

3.1 Automate manual operations
Manual operations, including moving files, creating directories, and saving figures, are inefficient and error-
prone. As many operations as possible should be automated instead.
Instead of manually downloading a file, use R to do it programmatically:
download.file(url = "https://example.com/data.csv", destfile = "data/data.csv")

Instead of manually saving figures, use ggsave():
ggsave("plots/my_plot.png", plot = p)

3.2 Embrace modularity
Avoid repetitive code. Repetition not only lengthens your script but also increases the chance for mistakes.
Bad practice: Repetitive code
data$age[data$age < 0] <- NA
data$score[data$score < 0] <- NA

Good practice: Create a function
replace_negatives_with_NA <- function(variable) {

variable[variable < 0] <- NA
return(variable)

}

data$age <- replace_negatives_with_NA(data$age)
data$score <- replace_negatives_with_NA(data$score)

3.3 Name constants in your scripts
“Magic numbers” are unexplained numbers in your scripts:
Bad practice: Magic number
if (x > 30) ...

Good practice: Using a named constant
MAX_AGE <- 30
if (x > MAX_AGE) ...

Descriptive constant names provide clarity. Furthermore, especially if these constants are used in multiple
places throughout your script, updating them becomes as simple as changing one line of code. It is also
advisable to put all such constants together, near the top of the script.

3.4 Produce results by running entire scripts
All results should be produced by writing scripts and then executing those scripts in their entirety. While
pieces of the script can be run manually during development, run the entire script on the data when the time
comes to actually produce a result.

4

4 Managing package dependencies
R’s rich ecosystem of packages is one of its strengths. However, with the increasing number of packages,
managing dependencies becomes essential to ensure the reproducibility and reliability of your code. This
section provides some best practices and recommended tools for handling package dependencies.

4.1 Namespace conflicts
When you load multiple packages, there is potential for functions with the same name to clash, leading to
ambiguity in your code. This is because different packages can have functions that share the same name.

4.1.1 Using :: for explicit namespaces

One way to deal with such conflicts is by explicitly specifying the package’s namespace when calling the
function using the :: syntax. This ensures that the correct function from the desired package is called. For
example, if both packages A and B have a function named fun(), and you want to use the function from
package A, you can do:
A::fun()

4.1.2 conflicted package

Another solution is to use the conflicted package. When loaded, conflicted will prevent you from using
any function that has a namespace conflict, prompting you to specify which one you want:
library(conflicted)
conflict_prefer("fun", "A") # Always use fun from package A

4.2 Managing package versions with renv

For the sake of reproducibility and easy collaboration, it is essential to track which versions of R packages
were used for a given analysis. The renv package can help by creating isolated, reproducible R environments.
Using renv, you can snapshot your current package versions, ensuring that others (or yourself in the future)
can replicate your environment:
initializing renv
renv::init()

By doing this, renv will create a snapshot of your current package versions and save it in a renv.lock
file. This file can then be shared, ensuring that the same package versions are used when your code is run
elsewhere.

4.3 Best practices
Lastly, always load required libraries at the top of your R scripts. This not only makes it clear which packages
are necessary but also ensures that potential namespace conflicts are identified early on, leading to more
predictable and stable code.

5 Code speed
When optimizing the execution speed of your code, it’s essential to strike a balance between code readability
and efficiency. However, as Donald Knuth famously stated, ‘premature optimization is the root of all evil.’
Focus on writing clean and functional code first. Once your code works correctly, you can then consider
optimizing the most computationally intensive parts if necessary.

5

https://conflicted.r-lib.org/
https://rstudio.github.io/renv/

5.1 Vectorization
R is a vectorized language, which means that operations can be performed on entire vectors rather than
looping over individual elements. For example, instead of using a loop to square each element of a vector,
you can simply square the vector directly:
numbers <- c(1, 2, 3, 4, 5)

Non-vectorized operation using a loop
squared_numbers <- vector("numeric", length(numbers))
for (i in seq_along(numbers)) {

squared_numbers[i] <- numbers[i]ˆ2
}

Example of vectorized operation
squared_numbers <- numbersˆ2

5.2 Factoring code out of loops
Often, parts of the code inside a loop don’t depend on the loop variable and can be taken outside the loop,
leading to efficiency gains. For example, if you’re repeatedly computing something within a loop that doesn’t
change, compute it once outside the loop.
Inefficient loop: Compute mean of the entire dataset in each iteration
for (i in 1:n_bootstrap) {

sample <- sample(data_points, size = length(data_points), replace = TRUE)
mu_data <- mean(data_points) # This is unnecessary in the loop
bootstrap_means[i] <- mean(sample) - mu_data

}

Optimized loop: Factor out the mean computation of the dataset
bootstrap_means_optimized <- numeric(n_bootstrap)
mu_data <- mean(data_points)
for (i in 1:n_bootstrap) {

sample <- sample(data_points, size = length(data_points), replace = TRUE)
bootstrap_means[i] <- mean(sample) - mu_data

}

6

	Code readability
	Example
	Code style
	Code transparency

	Code safety
	Code portability
	Defensive programming

	Automation and reproducibility
	Automate manual operations
	Embrace modularity
	Name constants in your scripts
	Produce results by running entire scripts

	Managing package dependencies
	Namespace conflicts
	Managing package versions with renv
	Best practices

	Code speed
	Vectorization
	Factoring code out of loops

