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Mapping gene-enhancer regulatory relationships is key to unraveling molecular disease mech-
anisms based on GWAS associations in non-coding regions. Recently developed CRISPR
regulatory screens (CRSs) based on single cell RNA-seq (scRNA-seq) are a promising high-
throughput experimental approach to this problem. However, the analysis of these screens
presents significant statistical challenges, including modeling cell-level gene expression and
correcting for sequencing depth. Using a recent large-scale CRS and its original analysis as a
case study, we demonstrate weaknesses in existing analysis methodology, which lead to false
positives as well as false negatives. To address these challenges, we propose SCEPTRE: anal-
ysis of single cell perturbation screens via conditional resampling. This novel method infers
gene-enhancer associations by modeling the stochastic assortment of CRISPR gRNAs among
cells instead of the gene expression, remaining valid despite arbitrary misspecification of the
gene expression model. Applying SCEPTRE to the large-scale CRS, we demonstrate im-
provements in both sensitivity and specificity. We also discover 217 regulatory relationships
not found in the original study, many of which are supported by existing functional data.



Eliciting gene-enhancer regulatory relationships remains a challenging and important prob-
lem. According to a recent review1, “the functional dissection of trait-associated genetic variants
from genome-wide association studies (GWAS) is likely to be a major focus of the field for the
coming decade,” so “it seems key that future efforts should prioritize the linking of enhancers
to their target genes.” Recently developed pooled CRISPR regulatory screen (CRS) technology
is a promising experimental approach to this problem. CRSs initially focused on one gene at a
time2–5, densely tiling perturbations at nearby sites and quantifying their impact based on either
cell proliferation or a marker for target gene expression. Even more recently, pairing CRISPR
perturbations with single-cell RNA-sequencing (scRNA-seq)6–9 has facilitated the study of how
enhancers impact the entire transcriptome10–12. Among these, Gasperini et al11 assayed thousands
of enhancers genome-wide, multiplexing dozens of CRISPR guide RNAs (gRNAs) per cell. Such
large-scale regulatory screens hold great promise for disentangling gene-enhancer relationships,
providing more direct evidence of regulation than existing methods based on epigenetic data13, 14

or chromatin conformation15, 16.
Despite their promise, the data obtained from such assays pose significant statistical challenges,

some inherited from scRNA-seq analysis and some unique to CRSs. Modeling cell-level gene ex-
pression is known to be a difficult task for scRNA-seq, and remains an active area of research17–19.
Issues such as zero-inflation (or lack thereof) and dispersion estimation in the context of negative
binomial modeling are as important for scRNA-seq based CRS analysis as they are for traditional
scRNA-seq data. Furthermore, unlike traditional (sc)RNA-seq experiments, the “treatment”—in
this case gRNA presence—is subject to measurement error6, 12, 20. In particular, we demonstrate
that sequencing depth acts as a confounder, since it impacts the measurement of both the treatment
(whether a given cell received a given gRNA) and the response (the resulting gene expression in
that cell). Improper sequencing depth correction can therefore lead to misleading conclusions.

While there is a fairly substantial literature21–26 on traditional genome-wide pooled CRISPR
screens (testing the impact of gene knockout on cell proliferation), analysis methods for scRNA-
seq based CRISPR regulatory screens are still scarce27. Gasperini et al. provide a starting point,
carrying out a DESeq228-inspired negative binomial regression analysis. However, we demonstrate
that this original analysis has several deficiencies, leaving it vulnerable to both false positives
and false negatives. A non-parametric approach called virtual FACS10 has also been proposed to
analyze similar data, although it does not easily allow correction for confounders such as cell cycle
or sequencing depth.

In this paper, we propose SCEPTRE (analysis of single cell perturbation screens via conditional
resampling), a novel methodology addressing the aforementioned challenges. The key idea is to
sidestep the issues of modeling single cell gene expression by modeling the stochastic assortment
of gRNAs among cells instead. Our approach is based on the conditional randomization test29,
which is a valid test of association despite arbitrary misspecifications of the gene expression distri-
bution. It therefore enjoys the robustness to expression model misspecification of non-parametric
approaches as well as the confounder correction abilities of parametric approaches. Applying
SCEPTRE to the Gasperini et al. data, we find excellent calibration on negative control gRNAs
and discover many novel regulatory relationships supported by a variety of existing functional
assays.

1



Results
Analysis challenges. The original analysis by Gasperini et al11 was carried out using Monocle230,
whose differential expression analysis is motivated by DESeq228. The latter, designed for the anal-
ysis of bulk RNA-seq data, relies on negative binomial regression. By examining the distribution of
negative binomial p-values pairing each gene with each of 50 non-targeting control (NTC) gRNAs,
Gasperini et al. find that these p-values are inflated. This trend is illustrated in their Figure 3E and
reproduced here in Figure 1a. The inflation evident in the NTC p-values makes it difficult to inter-
pret the p-values for the candidate enhancers. To remedy this issue, Gasperini et al. calibrate the
candidate enhancer p-values against the distribution of NTC p-values instead of the uniform distri-
bution. The resulting “empirical” p-values are used in their analysis for determining significance.
While appealing in its simplicity, we demonstrate that calibration against the NTC distribution is
not sufficient to address the issue. Because the effect of the miscalibration depends on both gene
and gRNA, a “one size fits all” approach leads to overcorrection for some gene-enhancer pairs
(false negatives) and undercorrection for others (false positives). We illustrate this in the context
of two underlying challenging: dispersion estimation and sequencing depth correction.

First, we briefly review the dispersion estimation process employed by Monocle2 (Figure 1b).
A raw dispersion is computed for each gene based on its sample variance. Then, a mean-dispersion
relationship is fit, depicted as the black dashed line. Monocle2 then collapses each raw dispersion
estimate onto this fitted line. While the raw dispersion estimates are noisy and some shrinkage
is helpful18, the collapsing of the dispersion estimates to the fitted line is likely to underestimate
(overestimate) the dispersions for points above (below) the line. We compute the deviation from
uniformity of the empirical NTC p-values for each gene using the Kolmogorov-Smirnov (KS)
test, represented by the color of each point in panel b. Circled genes have significantly miscal-
ibrated empirical p-values based on a Bonferroni correction at level α = 0.05; 21 were flagged
by Gasperini et al. as outliers but 21 were not. One of these miscalibrated but non-outlier genes
is HIST1H1D, whose empirical p-values are still inflated (panel c), leading to two potential false
discoveries, one of which is deemed “high confidence” (panel d; see also Figure S7). On the other
hand, genes like LUC7L2 have nearly uniformly distributed raw NTC p-values (panel e), making
the empirical correction unnecessary. For this gene, the empirical correction decreases the sig-
nificance of the p-value for a positive control gRNA by three orders of magnitude (the raw and
empirical p-values are depicted by horizontal lines in panel e). We conclude that the NTC-based
approach is insufficient to address issues with dispersion estimation or other kinds of parametric
model misspecification.

Next, we discuss the challenge of normalizing for sequencing depth (measured here as the total
number of unique molecular identifiers, or UMIs, per cell). Recently, it has been observed that
some of the normalization strategies developed for bulk RNA-seq may not carry over to scRNA-
seq18. In particular, these authors observed that the estimation of a single “size factor” for each cell
(the approach taken by the differential expression module of Monocle2) is not sufficient to correct
for sequencing depth for all genes. Instead, these authors advocate for a gene-by-gene correction.
Furthermore, we observe that the normalization problem is even more important in the context of
CRISPR screens, since sequencing is used for both gRNA detection and gene expression quantifi-
cation. Despite the use of a targeted amplification protocol for gRNA detection20, this process is
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still imperfect. Indeed, the total number of gRNAs detected in a cell increases with the sequencing
depth (ρ = 0.35, p < 10−15; Figure 1f). This makes sequencing depth a likely confounder if not
properly adjusted for. Examining the distributions of p-values for three NTC gRNAs, computed
as in Gasperini et al. but with an improved dispersion estimate (Methods), provides evidence for
this confounding (Figure 1g). We see that confounding can cause the p-values to be either too
conservative or too liberal. The leftover confounding is tied to the correlation between the gRNA
indicator and the sequencing depth, after applying the correction for guide count. We computed
a z-score for the direction and strength of this residual confounding (see Methods), annotated in
the legend of panel g for each gRNA: scrambled 21 (z = −3.25), scrambled 6 (z = −0.53), and
random 9 (z = 3.30). As expected, the residual strength and direction of the confounding impact
the direction of the p-value miscalibration. Strong negative residual confounding leads to false
positives, as with scrambled 21. On the other hand, strong positive residual confounding leads to
false negatives, as with random 9.
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Figure 1: CRISPR screen analysis challenges can lead to false positives and false negatives. a,
QQ-plot of Gasperini et al. p-values for all gene-gRNA pairs involving either candidate enhancer
or negative control gRNAs. Inflation in negative controls makes it harder to interpret associations
between genes and candidate enhancers, motivating the empirical p-value correction. b-d, Collaps-
ing dispersion estimates to fitted mean-variance relationship (b) leads to under-correction for some
genes (c,d) and over-correction for others (e). Circled genes in panel b have an NTC-based mis-
calibration p-value smaller than the Bonferroni threshold. Empirical correction not strong enough
for HIST1H1D gene (c), leading to two potential false discoveries (d). Dashed horizontal line in
panel d represents multiple testing threshold. Raw p-values already well-calibrated for LUC7L2
gene, so empirical correction unnecessarily shrinks the significance of the association with TSS-
targeting gRNA, depicted by horizontal lines, by three orders of magnitude (e). f-g, sequencing
depth impacts gRNA detection (f) and observed expression levels, and therefore acts as a con-
founder. Recomputing the negative binomial p-values with improved dispersions to isolate this
effect, inadequate sequencing depth correction can cause liberal bias for some gRNAs and conser-
vative bias for others (g). The direction and magnitude of this miscalibration for a given gRNA
is predicted well by the residual correlation between gRNA presence and sequencing depth after
accounting for total gRNAs per cell, quantified by the z-values in parentheses.



Improvements to the negative binomial approach. As a first attempt to alleviate the miscali-
bration, we introduced a few improvements to the negative binomial model. First, we improved
the sequencing depth correction. Instead of relying on DESeq2-style size factors, we corrected for
sequencing depth by introducing two additional covariates into the negative binomial regression:
the total number of UMIs observed and the number of genes with at least one UMI in a given cell.
These are in addition to the confounders Gasperini et al. corrected for (see Methods). This strategy
is in line with that advocated by a recent work on scRNA-seq analysis18. Second, we replaced the
collapsed dispersion estimates by the raw estimates (recall Figure 1b). This simple modification is
based on the intuition that not as much dispersion shrinkage is necessary as in bulk RNA-seq, since
in scRNA-seq we have many more samples (one for each cell) to estimate this parameter. Third,
we replaced the (two-sided) likelihood ratio test employed by Gasperini et al. by a left-tailed z-test,
for sensitivity to candidate enhancers that decrease gene expression when perturbed.

To assess the impact of these improvements on calibration, we applied the one-sided negative
binomial test with and without the improved confounder correction and dispersion estimation (four
total possibilities) to all 50 NTC gRNAs paired with all genes (Figure S5). The changes to con-
founder correction and dispersion estimation both markedly improve calibration, especially when
used in conjunction. However, the resulting improved negative binomial method still shows clear
signs of miscalibration, apparently producing mostly conservative p-values.

There are many possible reasons for the remaining miscalibration. It could be a problem with
the dispersion estimates, or misspecification of the negative binomial model itself. While more
effort could certainly be invested in further improvements of the parametric model for gene expres-
sion, we acknowledge that modeling scRNA-seq expression is a challenging problem that remains
open. Furthermore, negative control gRNAs may not always be available to assess calibration.
These considerations highlight the appeal of nonparametric approaches, which bypass parametric
modeling entirely. This motivates us to propose the following conditional resampling approach.

SCEPTRE: Analysis of single cell perturbation screens via conditional resampling. Our
main idea is to circumvent the challenge of modeling single cell gene expression by modeling
the stochastic assortment of gRNAs to cells instead. We view a CRISPR screen as a kind of ran-
domized experiment where gRNAs are randomly assigned to cells, so a null distribution for any
test statistic measuring the effect of an enhancer on a gene can be built by repeatedly reassigning
gRNAs to cells. This basic idea dates back to Fisher’s exact test31 and is the basis for permuta-
tion tests, which are widely used in genomics and have been proposed for the analysis of CRISPR
screens in particular24. We must go beyond permutation tests, however, to account for the fact that
different cells have different probabilities of receiving a gRNA (we discuss this below in the con-
text of Figure 3). To this end, we propose to use the conditional randomization test (CRT) recently
introduced by Candès et al.29

SCEPTRE (Figure 2) proceeds one gRNA and one gene at a time. To test the effect of this
gRNA on this gene, we use the improved negative binomial regression statistic described above.
This yields a z-value, which would typically be compared to a standard normal null distribution
based on the parametric negative binomial model. Instead, we build a null distribution for this
statistic via conditional resampling. To this end, we first fit a logistic regression model for the oc-
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currence of the gRNA in a cell, based on its covariates. For each cell, this yields a fitted probability
that it contains the gRNA. By analogy with causal inference, this plays the role of the propensity
score, i.e. the probability of receiving the “treatment.” Then, we generate a large number (say
500) of reshuffled datasets, where the expression and the covariates stay the same, while the gRNA
assignment is redrawn independently for each cell based on its fitted probability. The negative
binomial z-value is then recomputed for each of these datasets, which comprise a null distribu-
tion (depicted as a gray histogram in Figure 2c). We found that the skew-t distribution, used by
CRISPhieRmix25 for a different purpose, provided a good fit to these null histograms, so we com-
puted a final p-value by comparing the original z-value to this fitted skew-t null distribution. The
conditional resampling null distribution can differ substantially from that based on the negative
binomial model—for the same test statistic—depending on the extent of model misspecification
(Figure S6).

To mitigate the extra computational cost of resampling, we implement computational acceler-
ations that reduce the cost of each resample by a factor of about 100 (see Methods). The original
negative binomial regression takes about 3 seconds per gene-gRNA pair, while recomputing the
test statistic for 500 resamples takes a total of 16 seconds. Therefore, SCEPTRE takes about 19
seconds per pair, compared to 3 seconds for the original.
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Figure 2: SCEPTRE: Analysis of single cell perturbation screens via conditional resampling.
Schematic of methodology for one gene and one gRNA. a, Applying the conditional randomization
test29 to single cell CRISPR screens. The probability that each cell contains the gRNA is fit using
logistic regression based on covariates such as total UMIs and guide count. Then, gRNAs are
independently reassigned to each cell according to these probabilities to form “negative control”
data sets. b, Methodology outline. c, Inference using a resampling-based null distribution. The
negative binomial z-values from each resampled data set are used to fit a skew-t null distribution,
against which the original NB z-value is compared. The dashed line shows theN(0, 1) distribution,
against which the NB z-value would normally be compared.



SCEPTRE is well calibrated despite expression model misspecification. By shifting the mod-
eling burden away from the single cell gene expression, SCEPTRE avoids the miscalibration
caused by misspecification of parametric models for this quantity. We explored this observation
in a small proof-of-concept simulation with 1000 cells, one gene, one NTC gRNA, and one con-
founder (Figure 3a). We considered the one-sided z test statistic based on a negative binomial
expression distribution with mean 5 and dispersion 1. We then generated the data from this model
and from three others: one with dispersion 0.2, one with dispersion 5, and one with dispersion 1
but with zero-inflation. We compared three ways of building a null distribution for the test statistic
based on the possibly misspecified negative binomial model: the standard parametric approach,
the permutation approach (based on permuting gRNA assignments), and conditional resampling.
The parametric approach works as expected when the negative binomial model is correctly spec-
ified, but breaks down in all three cases of model misspecification. The permutation approach
is systematically conservative because of inadequate confounder correction. Finally, SCEPTRE’s
conditional randomization approach is well-calibrated regardless of model misspecification.

Next, we applied SCEPTRE to test the association between all NTC gRNAs and all genes
(Figure 3b-d). For comparison, we also applied the original negative binomial method, the im-
proved negative binomial method, and a permutation-based calibration of the latter. The simplest
calibration assessment is to compare the resulting 538,560 p-values to the uniform distribution
(Figure 3b). SCEPTRE shows excellent calibration, substantially improving on the parametric
approach based on the same test statistic. We also break the pairs down by NTC, resulting in 50
separate QQ plots. We overlay these QQ plots by taking the median observed p-value for each ex-
pected p-value, as well as the corresponding 95% confidence band (Figure 3c). Again, SCEPTRE
shows nearly perfect calibration, as evidenced by its colored confidence region coinciding with the
gray shaded region representing the pointwise 95% confidence band for the uniform distribution.
We find a similar conclusion when breaking the pairs down by gene (Figure 3d), though the other
methods perform better with respect to this metric.

To assess the power of SCEPTRE, we applied it to the positive control gRNA / gene pairs
assayed in Gasperini et al (Figure 4b). Positive control gRNAs targeted either gene transcription
start sites or enhancers previously found to regulate a gene. The proposed method captures strong
signal among the positive controls, especially for those targeting TSSs. Compared to the original
approach, positive controls of both kinds are generally more significant according to SPECTRE.
We note that the empirical correction employed by Gasperini et al. limits the accuracy of p-values
to about 10−6, which explains at least part of this observed power difference. We considered
a strategy akin to the skew-t fit to alleviate this issue, but the extremely heavy-tailed empirical
distribution precluded a simple parametric fit.

6



Figure 3: Calibration of SCEPTRE on simulated and real negative control data. a, Three
ways of calibrating a negative binomial test statistic, when the test statistic is based on the correct
model or contains expression model misspecifications. Only the conditional resampling approach
maintains calibration despite model misspecification. b-d, Application of SCEPTRE to Gasperini
et al negative control gRNAs, comparing all gene-NTC pairs to the uniform distribution (b) or
breaking down by NTC (c) or by gene (d). The colored lines and shaded regions in panels c and
d are the median and 95% confidence regions of the QQ plots across NTCs or genes, respectively;
the gray shaded regions show the corresponding regions under perfect calibration. The matching
of SCEPTRE’s colored regions with the gray ones in panels c and d, together with the overall near-
uniformity in panel b, demonstrates its excellent calibration on real negative control data. Note:
p-values in all panels truncated for visualization.



Analysis of candidate gene-enhancer regulatory relationships. We applied SCEPTRE to the
84595 gene-enhancer pairs considered in Gasperini et al., encompassing 10560 genes and 5779
candidate enhancers (Figure 4a). We applied the Benjamini-Hochberg correction at level 0.1 to the
p-values obtained for all of these candidate pairs, obtaining a total of 585 gene-enhancer pairs. By
comparison, Gasperini et al. found 470 high-confidence pairs. Comparing the SCEPTRE p-values
against the original empirical p-values (Figure 4c), we see that the two often diverge substantially.
Our analysis found 217 gene-enhancer pairs that the original analysis did not, while 102 were
found only by the original analysis. Many of the discoveries found only in the original analysis
show signs of the p-value inflation observed in Figure 1; see Figure S7.

Among the 217 new gene-enhancer pairs discovered, several are supported by evidence from
orthogonal functional assays. In particular, we highlight five of these pairs (Figure 4d) involving
genes not paired to any enhancers in the original analysis, which are supported by GTEx32 eQTL
p-values in whole blood or enhancer RNA correlation p-values across tissues from the FANTOM
project33. These pairs are listed in the GeneHancer database34, which aggregates eQTL, eRNA,
and other sources of evidence of gene-enhancer interactions. The SCEPTRE p-values for these
promising pairs are generally 1-2 orders of magnitude more significant than the original empirical
p-values.

We also found that the total set of gene-enhancer pairs discovered was better enriched for reg-
ulatory biological signals, including HI-C and ChIP-seq. 76% of SCEPTRE’s 585 gene-enhancer
pairs fell in the same topologically associated domain (TAD), compared to 71% of the 470 pairs
discovered in the original analysis. We also repeated Gasperini et al.’s contact frequency enrich-
ment analysis for those pairs falling in the same TAD (see Figure 4e, as well as Figures 6E and
S5B,C of Gasperini et al). We found similar levels of contact frequency enrichment, despite the
fact that we had 108 more gene-enhancer pairs in the same TADs. Finally, we repeated the ChIP-
seq enrichment analysis of Gasperini et al, to see how much more ChIP-seq signal there is in paired
enhancers compared to the set of all candidate enhancers. The enrichment was quantified as the
odds ratio that a candidate enhancer is paired to a gene, comparing those falling in the top quintile
of candidate enhancers by ChIP-seq signal and those not overlapping a ChIP-seq peak at all. We
find improved enrichment for each of the eight transcription factors considered by Gasperini et al.
(Figures 4g and S8).
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Figure 4: Application to Gasperini et al. data yields biologically plausible gene-enhancer
links. a, Well-calibrated NTC p-values give confidence in SCEPTRE p-values for candidate en-
hancers (compare to Figure 1a). b, The SCEPTRE p-values of the two kinds of positive control
gRNAs show significant signal, indicating the power of the proposed approach. Positive control
signal is generally stronger than that in the original approach. c, Comparing the original empiri-
cal p-values to those obtained from SCEPTRE. The two analysis methods differ substantially, with
217 gene-enhancer links discovered only by SCEPTRE and 102 discovered only by the original. d,
Five gene-enhancer pairs discovered by SCEPTRE but not the original analysis, each supported by
a GTeX eQTL or FANTOM enhancer RNA correlation p-value. e, For those gene-enhancer pairs
falling in the same TAD, the cumulative distribution of the fractional rank of the HI-C interaction
frequency compared to other distance-matched loci pairs within the same TAD. SCEPTRE shows
similar enrichment despite finding 32% more within-TAD pairs. f, Gene-enhancer pairs falling in
the same TAD. SCEPTRE finds 115 more total pairs, and a higher percentage of pairs fall in the
same TAD. g, Enrichment of ChIP-seq signal from eight cell-type relevant transcription factors
among paired enhancers. SCEPTRE exhibits greater enrichment across all transcription factors.



Discussion
We presented SCEPTRE, a novel method for the analysis of scRNA-seq based CRISPR regulatory
screens, which exhibits excellent calibration despite imperfect specification of the single cell gene
expression model. We avoid relying on the validity of the expression model by using the simpler
process of gRNA assortment among cells for inference instead. Unlike traditional nonparametric
analysis methods, our approach seamlessly corrects for important cell-level covariates. Our anal-
ysis yielded many new biologically plausible gene-enhancer relationships, supported by evidence
from eQTL, enhancer RNA co-expression, ChIP-seq, and HI-C data. We implemented computa-
tional accelerations to bring the cost of our resampling-based methodology down to well within
an order of magnitude of the traditional approach, making it quite feasible to apply for large-scale
data.

While SCEPTRE greatly reduces the burden of modeling single cell expression data, there are
still reasons to seek good models for gene expression. Even if the model for gRNA occurrence in
a cell were perfectly specified, better expression models can improve the sensitivity of the CRT35.
While gRNA occurrence is much simpler to model than gene expression, in practice we can still
only approximate the former. We conjecture that better approximations to the expression model
can make SCEPTRE more robust to misspecifications of the gRNA occurrence model; this phe-
nomenon is well-studied in the related contexts36, 37.

There are several directions for improvement in the analysis of scRNA-seq based pooled CRISPR
screens, which are not addressed by SCEPTRE. Many of these have in fact been addressed by
existing methodologies, mostly for different kinds of CRISPR screens than the one considered
here. Such remaining challenges include variable effectiveness of gRNAs21, 25, interactions among
enhancers10, 38, 39, and the limited resolution of CRISPR interference40. Furthermore, many tech-
niques from the increasingly rich literature on scRNA-seq analysis can be brought to bear on this
aspect of CRISPR regulatory screen analysis. Therefore, SCEPTRE adds to a growing statistical
toolbox for analyzing CRISPR regulatory screens, and in fact other kinds of single cell CRISPR
screens as well. Continued methodology development is crucial to fully realize the unprecedented
potential of this new technology to reliably elucidate regulatory relationships.

We are optimistic that the rapid advances in CRISPR screen technology, together with the ap-
propriate statistical tools, will facilitate the mapping of regulatory networks and ultimately improve
our understanding of disease mechanisms.
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Methods
Reproducing the negative binomial approach of Gasperini et al. Consider a particular gene/gRNA
pair. For each cell i = 1, . . . , n, let Xi ∈ {0, 1} indicate whether the gRNA was present in the cell,
let Yi ∈ {0, 1, 2, . . . } be the gene expression in the cell, defined as the number of unique molecular
identifiers (UMIs) from this gene, and let Zi ∈ Rd be a list of cell-level covariates.

Gasperini et al. used a negative binomial regression of Yi on Xi and Zi:

Yi
ind∼ NegBin(µi, α); log(µi) = β0 +Xiβ + ZT

i γ, (1)

with α being the dispersion and Zi consisting of three cell-level covariates: the total number of
gRNAs in the cell, the percentage of observed transcripts that are mitochondrial, and the sequenc-
ing batch. To correct for sequencing depth, Gasperini et al. replaced Yi in the above regression
by rounding Yi/si to the nearest integer, where si are DESeq2-style size factors. Raw dispersions
αraw were estimated for each gene based on its sample mean and variance. Gasperini et al fit a
mean-dispersion relationship to these raw dispersions, and finally obtained a shrunk estimate of α
by projecting αraw onto this curve (Figure 1b). The significance of Xi in the above regression was
determined with a likelihood ratio test for H0 : β = 0. Since enhancer perturbation decreases gene
expression, gene-enhancer pairs with β̂ > 0 were removed from the analysis.

Exploration of sequencing depth confounding. To focus on the issue of sequencing depth con-
founding, we used raw dispersion estimates (compare the red and blue curves in Figure S5) as
well as one-sided z-tests. We then repeated the negative binomial regression analysis underlying
Monocle2 with these updated dispersion estimates. These two modifications yielded new negative
binomial regression p-values for each gene/gRNA pair (Figure 1g).

Next, we sought to understand the direction and strength of the confounding effect by testing
the residual association between each gRNA and the sequencing depth, after accounting for the
total number of gRNAs per cell. In particular, for each gRNA, we ran a logistic regression of the
gRNA indicator against the total number of gRNAs and the total number of UMIs detected per
cell. We then extracted the z-score of the coefficient of the total number of UMIs. We found these
agreed well with the direction and strength of the confounding effect, as shown in Figure 1g.

Conditional randomization test and accelerations. Letting (X, Y, Z) = {(Xi, Yi, Zi)}ni=1,
consider any test statistic T (X, Y, Z) measuring the effect of the gRNA on the expression of the
gene. The conditional randomization test29 is based on resampling the gRNA indicators indepen-
dently for each cell. Letting πi = P[Xi = 1|Zi], define random variables

X̃i
ind∼ Ber(πi). (2)

Then, the CRT p-value is given by

pCRT = P[T (X̃, Y, Z) ≥ T (X, Y, Z)|X, Y, Z]. (3)
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This translates to repeatedly sampling X̃ from the distribution (2), recomputing the test statistic
with X replaced by X̃ , and defining the p-value as the probability the resampled test statistic ex-
ceeds the original. Under the null hypothesis that the gRNA perturbation does not impact the cell
(adjusting for covariates), i.e. Y ⊥⊥ X | Z, we obtain a valid p-value (3), regardless of the expres-
sion distribution Y |X,Z and regardless of the test statistic T . We choose a test statistic T based
on the improved negative binomial regression discussed in the main text, with two computational
accelerations.

First, we employed the recently proposed43 distillation technique to accelerate the recomputa-
tion of the negative binomial regression for each resample. The idea is to use a slightly modified
test statistic, consisting of two steps:

1. Fit (β̂0, γ̂) from the negative binomial regression (1) except without the gRNA term:

Yi
ind∼ NegBin(µi, α); log(µi) = β0 + ZT

i γ. (4)

2. Fit β̂ from a negative binomial regression with the estimated contributions of Zi from step 1
as offsets:

Yi
ind∼ NegBin(µi, α); log(µi) = Xiβ + β̂0 + ZT

i γ̂. (5)

Conditional randomization testing with this two step test statistic, which is nearly identical to the
full negative binomial regression (1), is much faster. Indeed, since the first step is not a function
of Xi, it remains the same for each resampled triple (X̃, Y, Z). Therefore, only the second step
must be recomputed with each resample, and this step is faster because it involves only a univariate
regression.

Next, we accelerated the second step above using the sparsity of the binary vector (X1, . . . , Xn)
(or a resample of it). To do so, we wrote the log-likelihood of the reduced negative binomial
regression (5) as follows, denoting by `(Yi, log(µi)) the negative binomial log-likelihood:

n∑
i=1

`(Yi, Xiβ + β̂0 + ZT
i γ̂) =

∑
i:Xi=0

`(Yi, β̂0 + ZT
i γ̂) +

∑
i:Xi=1

`(Yi, β + β̂0 + ZT
i γ̂)

= C +
∑

i:Xi=1

`(Yi, β + β̂0 + ZT
i γ̂).

This simple calculation shows that, up to a constant, the negative binomial log-likelihood corre-
sponding to the model (5) is the same as that corresponding to the model with only intercept and
offset term for those cells with a gRNA:

Yi
ind∼ NegBin(µi, α); log(µi) = β + β̂0 + ZT

i γ̂, for i such that Xi = 1. (6)

The above negative binomial regression is therefore equivalent to equation (5), but much faster
to compute, because it involves only the thousand or so cells containing the gRNA instead of the
200,000 total cells.
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SCEPTRE methodology. In practice, we must estimate the gRNA probabilities πi as well as the
p-value pCRT. This is because usually we do not know the distribution X|Z, and cannot compute
the conditional probability in equation (3) exactly. We propose to estimate πi via logistic regression
of X on Z, and to estimate pCRT by resampling X̃ a large number of times and then fitting a skew-t
distribution to the resampling null distribution T (X̃, Y, Z)|X, Y, Z. We outline SCEPTRE below:

1. Fit covariate effects (β̂0, γ̂) on gene expression using the negative binomial regression (4).

2. Extract a z-score z(X, Y, Z) from the reduced negative binomial regression (6).

3. Assume that

Xi
ind∼ Ber(πi); log

(
πi

1− πi

)
= τ0 + ZT

i τ (7)

for τ0 ∈ R and τ ∈ Rd, and fit (τ̂0, τ̂) via logistic regression of X on Z. Then, extract the
fitted probabilities π̂i = (1 + exp(−(τ̂0 + ZT

i τ̂)))
−1.

4. For b = 1, . . . , B,

• Resample the gRNA assignments based on the probabilities π̂i to obtain X̃b (2).

• Extract a z-score z(X̃b, Y, Z) from the reduced negative binomial regression (6).

5. Fit a skew-t distribution F̂null to the resampled z-scores {z(X̃b, Y, Z)}Bb=1.

6. Return the p-value p̂SCEPTRE = P[F̂null ≤ z(X, Y, Z)].

In our data analysis, we used B = 500 resamples. Following Gasperini et al, we based our
analysis on the top two gRNAs targeting each enhancer. Some enhancers were also targeted with
two additional gRNAs, but we excluded these from the analysis.

Numerical simulation to assess calibration. We simulated one gene Yi, one gRNA Xi, and one
confounder Zi in n = 1000 cells. We drew Zi

i.i.d.∼ N(0, 1). Then, we drew Xi based on the logistic
model (7), with τ = 4 and τ0 = log 0.05

0.95
, the latter to make the probability of gRNA occurrence

about 0.05 on average across cells. Finally, we drew the gene expression Yi from the following
zero-inflated negative binomial model:

Yi
ind∼ λδ0 + (1− λ)NegBin(µi, α), log(µi) = β0 + 4Zi.

Note that for any β0, λ, α, the gRNA does not impact the gene expression in this setup. We chose
β0 = log(5) to make the average gene expression about 5. The four settings shown in Figure 3a
correspond to

(λ1, α1) = (0, 1); (λ2, α2) = (0, 5); (λ3, α3) = (0, 0.2); (λ4, α4) = (0.25, 1).

For the first, the negative binomial model is correctly specified. For the second and third, the
dispersion estimate of 1 is too small and too large, respectively. The last setting exhibits zero
inflation.
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We applied three methods to these four problem settings, each with 500 repetitions. The neg-
ative binomial method was based on the z statistic from the standard negative binomial regres-
sion (1) with α = 1. The permutation method was implemented the same as SPECTRE, except
skipping step 3 and defining X̃b to be a random permutation of X . Both the permutation method
and SPECTRE used B = 250 resamples.

Definition of Gasperini et al. discovery set. Gasperini et al. reported a total of 664 gene-
enhancer pairs, identifying 470 of these as “high-confidence.” We chose to use the latter set, rather
than the former, for all our comparisons. Gasperini et al. carried out their ChIP-seq and HI-C
enrichment analyses only on the high-confidence discoveries, so for those comparisons we do the
same. Furthermore, the 664 total gene-enhancer pairs reported in the original analysis were the
result of a Benjamini-Hochberg FDR correction that included not only the candidate enhancers but
also hundreds of positive controls. While Bonferroni corrections can only become more conserva-
tive when including more hypotheses, BH corrections are known to become anticonservative when
extra positive controls are included44. To avoid this extra risk of false positives, we chose to use
the “high-confidence” set throughout.

ChIP-seq, HI-C enrichment analyses. These analyses (see Figures 4c-e and S8) were carried
out almost exactly following Gasperini et al. The only change we made is in our quantification of
the ChIP-seq enrichment (Figure 4e). We use the odds ratio of a candidate enhancer being paired to
a gene, comparing the top and bottom ChIP-seq quintiles. Gasperini et al. use a more complicated
formula for this enrichment that we were unable to reproduce.

Data availability
Analysis results are available online at https://bit.ly/SCEPTRE. All analysis was per-
formed on publicly available data. The CRISPR screen data11 is available at https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120861. The ChIP-seq data are
drawn from the ENCODE project45 and are available at https://www.encodeproject.
org/. The HI-C enrichment analysis is based on the data from Rao et al15, available at https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525. The eQTL and
eRNA co-expression p-values are taken from the GeneHancer database34, available as part of
GeneCards (https://www.genecards.org/).

Code availability
Code to reproduce all data analysis is available on Github at https://github.com/ekatsevi/
SCEPTRE.

15

https://bit.ly/SCEPTRE
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120861
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120861
https://www.encodeproject.org/
https://www.encodeproject.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
https://www.genecards.org/
https://github.com/ekatsevi/SCEPTRE
https://github.com/ekatsevi/SCEPTRE


Figure S5: Improving dispersion estimation and confounder correction. NTC-based calibra-
tion of four negative binomial methods is shown: original, improved confounder correction, im-
proved dispersion estimation, and both improvements. a, QQ plot for all gene-NTC pairs. The
method with dispersion improvement (shown in blue) appears to be well calibrated, but this is not
the case; see panel c. b, Calibration on a per-gene basis; details as in Figure 3d. All methods
perform relatively well on this metric, showing only slight conservative bias on average. c, Cali-
bration on a per-NTC basis; details as in Figure 3c. Note that the method in blue shows noticeable
miscalibration in both conservative and liberal directions. Also recall Figure 1g, which is based on
the same method. In summary, the method with improved confounder correction and dispersion
estimation performs best overall, but still is noticeably miscalibrated.



Figure S6: Comparing negative binomial and conditional randomization p-values based on
the same test statistic. a, The standard parametric negative binomial p-value versus that obtained
from the same test statistic by conditional randomization, for each gene / candidate enhancer pair
(both truncated at 10−10 for visualization). The two can diverge fairly substantially. b-d, Para-
metric and conditional randomization null distributions for the negative binomial z-value in three
cases: the two p-values are about the same (b), the conditional randomization p-value is more
significant (c), the parametric p-value is more significant (d).



Figure S7: Examining the sources of potential false positives in the original analysis. Each
point represents a gene / candidate enhancer pair. The x-axis shows the residual confounding
z-score (see Methods and Figure 1g), computed for each gRNA, while the y-axis shows the
Kolmogorov-Smirnov p-value of the empirical NTC p-values for each gene. Colors and shapes
are as in Figure 4c. Circled points correspond to gene / candidate enhancer pairs that do not fall
in the same TAD (recall Figure 4f) and either have residual confounding z < −2 or KS p-value
p < 0.05 (these thresholds are denoted by the dashed vertical and horizontal lines). The 18 circled
red points therefore represent discoveries in the original analysis that may be false positives; recall
the labeled pair HIST1H1D/chr6.1077 from Figure 1d.
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Figure S8: Details on ChIP-seq enrichment analysis. Fraction of candidate enhancers paired
with a gene, broken down by quintile of ChIP-seq signal (0 means the candidate enhancer did
not overlap a ChIP-seq peak), based on which the odds ratios in Figure 4g were computed. Both
methods generally pair candidate enhancers in higher ChIP-seq quintiles more frequently, but this
enrichment is more pronounced in SCEPTRE across all eight transcription factors.


