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Conditional independence testing under Model-X

For random variables (X ,Y ,Z ) ∈ R1+1+p, would like to test

H0 : X ⊥⊥ Y | Z

based on a sample (X ,Y ,Z ) = {(Xi ,Yi ,Zi ) : i = 1, . . . , n}.

Model-X assumption (Candès et al., 2018)

fX |Z = f ∗
X |Z for known f ∗
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Model-X methodologies

MX knockoffs and the conditional randomization test (CRT)
proposed by Candès et al., 2018.

Algorithm: Conditional Randomization Test

Data: Samples (Xi ,Yi ,Zi ), test statistic T (X ,Y ,Z ), MX f ∗
X |Z

Compute T (X ,Y ,Z );
for b = 1, . . . ,B do

Resample X̃ b
i from f ∗

X |Z=Zi
and recompute T (X̃ b,Y ,Z );

end

Return: pCRT = 1
1+B

(
1 +

∑B
b=1 1(T (X̃ b,Y ,Z ) ≥ T (X ,Y ,Z ))

)
A variety of knockoffs and CRT extensions are now available.
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Common themes in MX methodology

• T usually based on a statistical machine learning method

• Performance of the ML method impacts the power of the test

• Randomness in X used for inference, conditioning on Y and Z

Goal of this talk:
Develop a quantitative understanding of these themes.
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Most powerful CRT against a point alternative

Given alternative distributions f̄Z and f̄Y |X ,Z , consider testing

H0 : (X ,Y ,Z ) ∼ fZ f
∗
X |Z fY |Z for some fZ , fY |Z

H1 : (X ,Y ,Z ) ∼ f̄Z f
∗
X |Z f̄Y |X ,Z .

Composite null prevents directly deducing the most powerful test.

But the CRT φT is also a conditionally valid test:

sup
H0

E[φT (X ,Y ,Z )|Y = y ,Z = z ] ≤ α for all y , z .

What is the most powerful conditionally valid test?
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Conditioning reduces a composite null to a point null

Fix realizations Yi and Zi for each i . Then,

Under H0, Xi |Yi ,Zi
ind∼ f ∗Xi |Zi

;

Under H1, Xi |Yi ,Zi
ind∼ f ∗Xi |Zi

f̄Yi |Xi ,Zi
f̄Yi |Zi

.

So, conditioning on Y ,Z gives a simple hypothesis testing problem.
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Neyman-Pearson gives the most powerful CRT

By NP, most powerful conditionally valid test rejects for large

T opt(X ,Y ,Z ) =
n∏

i=1

f̄Yi |Xi ,Zi
f̄Yi |Zi

∝
n∏

i=1

f̄Yi |Xi ,Zi
.

Theorem

CRT based on T opt is the most powerful conditionally valid test
against (X ,Y ,Z ) ∼ f̄Z f

∗
X |Z f̄Y |X ,Z .

The knockoff statistic T opt([X , X̃ ],Y ) =
∏n

i=1 f̄Yi |Xi
maximizes the

probability P[T ([X , X̃ ],Y ) > T ([X , X̃ ]swap(j),Y )].

ML methods T used in practice learn approximations to f̄Y |X ,Z .
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Connections

• Least squares: If Y = Xβ + Zγ + ε, the optimal CRT statistic is
‖Y − Xβ − Zγ‖2 − ‖Y − Zγ‖2, akin to the OLS F -statistic.

• Unbiased testing: In parametric families with nuisance params, MP
unbiased test is MP test conditional on nuisance sufficient statistic.

• Holdout randomization test: f̂Y |X ,Z learned on a training set and

CRT based on loss
∑

i log f̂Yi |Xi ,Zi
run on a test set.
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‖Y − Xβ − Zγ‖2 − ‖Y − Zγ‖2, akin to the OLS F -statistic.

• Unbiased testing: In parametric families with nuisance params, MP
unbiased test is MP test conditional on nuisance sufficient statistic.

• Holdout randomization test2: f̂Y |X ,Z learned on a training set and

CRT based on loss
∑

i log f̂Yi |Xi ,Zi
run on a test set.

2Tansey et al., 2018, Bates et al., 2020
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Impact of ML prediction error on CRT power

Suppose that

Y = Xβ + g(Z ) + ε, ε ∼ N(0, σ2),

and we estimate ĝ based on a separate training set (like HRT).

How does test error in ĝ impact the power of the CRT based on ĝ?

In particular, consider the CRT based on3

T (X ,Y ,Z ) =
1√
n

n∑
i=1

(Xi − µi )(Yi − ĝ(Zi )),

where µi = E[Xi |Zi ].
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How does test error in ĝ impact the power of the CRT based on ĝ?

In particular, consider the CRT based on3

T (X ,Y ,Z ) =
1√
n

n∑
i=1

(Xi − µi )(Yi − ĝ(Zi )),

where µi = E[Xi |Zi ].

3Related to the generalized covariance measure of Shah and Peters (2020);
studied in the double robustness literature, e.g. Chernozhukov et al. (2018).
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Prediction error impacts asymptotic efficiency of the CRT

For simplicity, suppose Var[X |Z ] = s2 a.s. for some s2 > 0.

Define the test error E = E[(ĝ(Z )− g(Z ))2].

Fixing dimension and training set, let n→∞ and βn = h√
n

.

Theorem

Under the MX assumption and bounded fourth moments,

E [φT (X ,Y ,Z )|Y ,Z ]→ Φ

(
zα +

hs√
σ2 + E

)
,

almost surely in Y ,Z .
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More connections to linear regression

Note that

Y−ĝ(Z ) = Xβ+(g(Z )− ĝ(Z ) + ε) = Xβ+ε′; ε′ ∼ (0, σ2+E).

Estimation error in ĝ inflates the noise level by E .

T (X ,Y ,Z ) = 1√
n

(X −µ)T (Y − ĝ(Z )) is unnormalized OLS t-stat.

Under the null (β = 0),

T (X̃ ,Y ,Z )|Y ,Z → N(0, s2(σ2 + E))

T (X ,Y ,Z )|X ,Z → N(0, s2(σ2 + E)).

If the semiparametric model is true, CRT resampling distribution
asymptotically equivalent to OLS null distribution.
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Estimation error in ĝ inflates the noise level by E .

T (X ,Y ,Z ) = 1√
n
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Asymptotic validity under a weaker assumption than MX

Under the null,

Var [Tn|Y ,Z ] =
1

n

n∑
i=1

Var[Xi |Zi ](Yi − ĝ(Zi ))2 = S2
n ,

with S2
n known. We can show that, almost surely in (Y ,Z ),

L
(
S−1
n Tn|Y ,Z

)
→ N(0, 1).

(Sn,Tn) only involves first and second moments E[X |Z ],Var[X |Z ].
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Asymptotic validity under a weaker assumption than MX

This observation motivates the following:

Definition (MX(2) assumption)

(X ,Y ,Z ) is such that E[X |Z ] = µ(Z ) and Var[X |Z ] = s2(Z ),
for known functions µ(·) and s2(·).

There is an asymptotically valid conditional independence test that
does not require the MX assumption or resampling:

Theorem

Under MX(2), φ = 1(S−1
n Tn > z1−α) has uniform asympt. level α.

Related to the double robustness literature, but the latter focuses
on approximating the first moments E[X |Z ] and E[Y |Z ].

14 / 18



Asymptotic validity under a weaker assumption than MX

This observation motivates the following:

Definition (MX(2) assumption)

(X ,Y ,Z ) is such that E[X |Z ] = µ(Z ) and Var[X |Z ] = s2(Z ),
for known functions µ(·) and s2(·).

There is an asymptotically valid conditional independence test that
does not require the MX assumption or resampling:

Theorem

Under MX(2), φ = 1(S−1
n Tn > z1−α) has uniform asympt. level α.

Related to the double robustness literature, but the latter focuses
on approximating the first moments E[X |Z ] and E[Y |Z ].

14 / 18



Asymptotic validity under a weaker assumption than MX

This observation motivates the following:

Definition (MX(2) assumption)

(X ,Y ,Z ) is such that E[X |Z ] = µ(Z ) and Var[X |Z ] = s2(Z ),
for known functions µ(·) and s2(·).

There is an asymptotically valid conditional independence test that
does not require the MX assumption or resampling:

Theorem

Under MX(2), φ = 1(S−1
n Tn > z1−α) has uniform asympt. level α.

Related to the double robustness literature, but the latter focuses
on approximating the first moments E[X |Z ] and E[Y |Z ].

14 / 18



Connections to causal inference

The MX setting is like that of a randomized experiment:
X is the treatment; Y is the response; Z are the covariates.

Instead of complete randomization, the treatment X is assigned to
units based on the covariates Z using a known mechanism f ∗

X |Z .

Even in the absence of confounding, adjusting for covariates known
to reduce variance in estimates of causal effect.
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Connections to causal inference

Non-asymptotic tests based on resampling X go back to Fisher
(1935) and Rosenbaum (1984). Both treat Y ,Z as fixed.

Asymptotic “superpopulation” approach (e.g. Robins et al., 1992)
treats Y as random, focused on semiparametric models.

Current work reinforces close links between the two approaches;
see also discussion in Rosenbaum (2002).
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Summary

In this talk, we

• Identified the CRT most powerful against point alternatives;

• Expressed CRT’s asymptotic power in terms of ML test error;

• Weakened the MX assumption, retaining asymptotic validity;

• Drew some connections between MX and causal inference.
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Future work

Many questions still remain open:

• Are all valid tests under MX also conditionally valid? If not,
are all optimal tests conditionally valid?

• Optimality statements against composite alternatives?

• Extensions of power results to high dimensions? Some results
for lasso test statistics available for knockoffs and for CRT.

• Further connections with causal inference and with existing
asymptotic (doubly robust, semiparametric) inference?

These lines of inquiry can improve our understanding of MX
methodologies and help guide their development in the future.
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