The Multilayer Knockoff Filter: Controlled Multi-Resolution Variable Selection

Eugene Katsevich

June 21, 2017

Section 1

Model selection at multiple resolutions

Methodology

Genetic association studies

Data:

- Phenotype measurements $\mathbf{y} \in \mathbb{R}^n$.
- Genotype measurements $\boldsymbol{X} \in \mathbb{R}^{n \times p}$.

Scientific question:

• Which single nucleotide polymorphisms (SNPs) are associated to the phenotype?

A typical GWAS output table

SNP	Chr		Location relative		
		MB	Closest RefSeq gene	to gene	GWAS P value
rs11894266	2	170.3	SSB	5'	6.9×10^{-7}
rs610932	11	59.7	MS4A6A	3' UTR	1.4×10^{-6}
rs10501927	11	99.3	CNTN5	Intronic	2.0×10^{-6}
rs9446432	6	72.4	C6orf155	Intergenic	2.8×10^{-6}
rs7561528	2	127.6	BIN1	5'	3.0×10^{-6}
rs744373	2	127.6	BIN1	5'	3.2×10^{-6}
rs662196	11	59.7	MS4A6A	Intronic	5.2×10^{-6}
rs583791	11	59.7	MS4A6A	Intronic	5.3×10^{-6}
rs676309	11	59.8	MS4A4E	5'	6.3×10^{-6}
rs1157242	8	37.2	KCNU1	Intergenic	7.0×10^{-6}
rs1539053	1	57.9	DAB1	Intronic	7.1×10^{-6}
rs11827375	11	76.0	C11orf30	3'	7.2×10^{-6}
rs1408077	1	205.9	CR1	Intronic	8.3×10^{-6}
rs9384428	6	156.5	ARID1B	Intergenic	8.5×10^{-6}
rs6701713	1	205.9	CR1	Intronic	8.7×10^{-6}
rs3818361	1	205.9	CR1	Intronic	9.2×10^{-6}

Table 2 SNPs showing association with Alzheimer's disease at $P \le 1 \times 10^{-5}$

Figure: Source: Harold et al. Nature Genetics 41.10 (2009): 1088.

A typical GWAS output table

SNP	Chr		Location relative		
		MB	Closest RefSeq gene	to gene	GWAS P value
rs11894266	2	170.3	SSB	5'	6.9×10^{-7}
rs610932	11	59.7	MS4A6A	3' UTR	1.4×10^{-6}
rs10501927	11	99.3	CNTN5	Intronic	2.0×10^{-6}
rs9446432	6	72.4	C6orf155	Intergenic	2.8×10^{-6}
rs7561528	2	127.6	BIN1	5'	3.0×10^{-6}
rs744373	2	127.6	BIN1	5'	3.2×10^{-6}
rs662196	11	59.7	MS4A6A	Intronic	5.2×10^{-6}
rs583791	11	59.7	MS4A6A	Intronic	5.3×10^{-6}
rs676309	11	59.8	MS4A4E	5'	6.3×10^{-6}
rs1157242	8	37.2	KCNU1	Intergenic	7.0×10^{-6}
rs1539053	1	57.9	DAB1	Intronic	7.1×10^{-6}
rs11827375	11	76.0	C11orf30	3'	7.2×10^{-6}
rs1408077	1	205.9	CR1	Intronic	8.3×10^{-6}
rs9384428	6	156.5	ARID1B	Intergenic	8.5×10^{-6}
rs6701713	1	205.9	CR1	Intronic	8.7×10^{-6}
rs3818361	1	205.9	CR1	Intronic	9.2×10^{-6}

Table 2 SNPs showing association with Alzheimer's disease at $P \le 1 \times 10^{-5}$

Figure: Source: Harold et al. Nature Genetics 41.10 (2009): 1088.

We have discoveries at both the SNP and gene levels.

A typical GWAS output table

SNP	Chr		Location relative		
		MB	Closest RefSeq gene	to gene	GWAS P value
rs11894266	2	170.3	SSB	5'	6.9×10^{-7}
rs610932	11	59.7	MS4A6A	3' UTR	1.4×10^{-6}
rs10501927	11	99.3	CNTN5	Intronic	2.0×10^{-6}
rs9446432	6	72.4	C6orf155	Intergenic	2.8×10^{-6}
rs7561528	2	127.6	BIN1	5'	3.0×10^{-6}
rs744373	2	127.6	BIN1	5'	3.2×10^{-6}
rs662196	11	59.7	MS4A6A	Intronic	5.2×10^{-6}
rs583791	11	59.7	MS4A6A	Intronic	5.3×10^{-6}
rs676309	11	59.8	MS4A4E	5'	6.3×10^{-6}
rs1157242	8	37.2	KCNU1	Intergenic	7.0×10^{-6}
rs1539053	1	57.9	DAB1	Intronic	7.1×10^{-6}
rs11827375	11	76.0	C11orf30	3'	7.2×10^{-6}
rs1408077	1	205.9	CR1	Intronic	8.3×10^{-6}
rs9384428	6	156.5	ARID1B	Intergenic	8.5×10^{-6}
rs6701713	1	205.9	CR1	Intronic	8.7×10^{-6}
rs3818361	1	205.9	CR1	Intronic	9.2×10^{-6}

Table 2 SNPs showing association with Alzheimer's disease at $P \le 1 \times 10^{-5}$

Figure: Source: Harold et al. Nature Genetics 41.10 (2009): 1088.

We have discoveries at both the SNP and gene levels. \Rightarrow We seek to control both corresponding FDRs.

• Outcome variable y and predictors X_1, \ldots, X_p .

- Outcome variable y and predictors X_1, \ldots, X_p .
- Base-level hypotheses H_1, \ldots, H_p , where

$$H_j: y \perp \perp X_j | X_{-j}.$$

- Outcome variable y and predictors X_1, \ldots, X_p .
- Base-level hypotheses H_1, \ldots, H_p , where

$$H_j: y \perp \perp X_j | X_{-j}.$$

 For each m = 1,..., M, partition hypotheses into disjoint groups A_g^m:

$$\{1,\ldots,p\} = \bigcup_{g=1}^{G_m} \mathcal{A}_g^m$$

- Outcome variable y and predictors X_1, \ldots, X_p .
- Base-level hypotheses H_1, \ldots, H_p , where

 $H_j: y \perp \perp X_j | X_{-j}.$

 For each m = 1,..., M, partition hypotheses into disjoint groups A^m_g: G_m

$$\{1,\ldots,p\} = \bigcup_{g=1}^{m} \mathcal{A}_{g}^{m}.$$

• Selection set ${\mathcal S}$ induces selections at each layer:

$$\mathcal{S}_m = \{g = 1, \ldots, G_m : A_g^m \text{ intersects } \mathcal{S}\}.$$

Methodology

Multilayer FDR control¹

Definition

A model selection procedure obeys **multilayer FDR control** at target levels q_1, \ldots, q_M if

$$\mathsf{FDR}_m = \mathbb{E}\left[\frac{|\mathcal{S}_m \cap \mathcal{H}_0^m|}{|\mathcal{S}_m|}
ight] \leq q_m \quad \text{for all } m.$$

¹Barber and Ramdas '15

Section 2

Building blocks: p-filter and knockoff filter

Methodology

p-filter²

If p-values for base-level hypotheses are available...

²Barber and Ramdas '15

p-filter²

If p-values for base-level hypotheses are available...

• Get group p-values using Simes.

²Barber and Ramdas '15

Methodology

p-filter²

If p-values for base-level hypotheses are available...

- Get group p-values using Simes.
- Introduce thresholds
 - $\boldsymbol{t}=(t_1,\ldots,t_M).$

p-filter²

If p-values for base-level hypotheses are available...

- Get group p-values using Simes.
- 2 Introduce thresholds $\mathbf{t} = (t_1, \ldots, t_M).$
- Select hypotheses S(t) passing thresholds at all layers.

²Barber and Ramdas '15

Methodology

p-filter²

If p-values for base-level hypotheses are available...

- Get group p-values using Simes.
- 2 Introduce thresholds $t = (t_1, \ldots, t_M).$
- Select hypotheses S(t) passing thresholds at all layers.

4 Choose

$$t^* = \max\{ oldsymbol{t} : \widehat{\mathsf{FDP}}_m(oldsymbol{t}) \leq q_m \, orall m \}.$$

²Barber and Ramdas '15

A model selection procedure bypassing the construction of p-values.

³Barber and Candes '15

A model selection procedure by passing the construction of p-values.

① Construct "knockoff variables" \widetilde{X} to use as controls.

³Barber and Candes '15

A model selection procedure bypassing the construction of p-values.

- **①** Construct "knockoff variables" \widetilde{X} to use as controls.
- **Q** Create statistics $\boldsymbol{W} = (W_1, \dots, W_p)$, where W_j quantifies how much more "significant" X_j is than \widetilde{X}_j .

³Barber and Candes '15

A model selection procedure bypassing the construction of p-values.

- **①** Construct "knockoff variables" \widetilde{X} to use as controls.
- **②** Create statistics $\boldsymbol{W} = (W_1, \dots, W_p)$, where W_j quantifies how much more "significant" X_j is than \widetilde{X}_j .
- Consider $S(t) = \{j : W_j \ge t\}.$

³Barber and Candes '15

A model selection procedure bypassing the construction of p-values.

- **①** Construct "knockoff variables" \widetilde{X} to use as controls.
- **②** Create statistics $\boldsymbol{W} = (W_1, \dots, W_p)$, where W_j quantifies how much more "significant" X_j is than \widetilde{X}_j .
- **3** Consider $S(t) = \{j : W_j \ge t\}.$

³Barber and Candes '15

Section 3

Multilayer knockoff filter

A synthesis of the two approaches

I propose the multilayer knockoff filter (MKF), which leverages

- The multilayer testing framework of the p-filter;
- Test statistics for model selection from the knockoff filter.

① First, construct group knockoff⁴ variables \widetilde{X}^m satisfying

$$(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^m)_{swap(\mathcal{C})} \stackrel{d}{=} (\boldsymbol{X}, \widetilde{\boldsymbol{X}}^m).$$

where ${\mathcal C}$ is any union of groups at the $\mathit{m}{th}$ layer.

⁴Barber and Dai, 2016

① First, construct group knockoff⁴ variables \widetilde{X}^m satisfying

$$(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^m)_{swap(\mathcal{C})} \stackrel{d}{=} (\boldsymbol{X}, \widetilde{\boldsymbol{X}}^m).$$

where C is any union of groups at the *m*th layer. 2 Define $(\boldsymbol{b}^{\star}(\lambda), \widetilde{\boldsymbol{b}}^{\star}(\lambda))$ via the regularized regression

$$\underset{\boldsymbol{b},\widetilde{\boldsymbol{b}}}{\arg\max} \frac{1}{2} \left\| \boldsymbol{y} - [\boldsymbol{X} \ \widetilde{\boldsymbol{X}}^{m}] \begin{pmatrix} \boldsymbol{b} \\ \widetilde{\boldsymbol{b}} \end{pmatrix} \right\|^{2} + \lambda \left(\sum_{g=1}^{G_{m}} \ell_{g}^{m}(\boldsymbol{b}_{\mathcal{A}_{g}^{m}}) + \sum_{g=1}^{G_{m}} \ell_{g}^{m}(\widetilde{\boldsymbol{b}}_{\mathcal{A}_{g}^{m}}) \right),$$

① First, construct group knockoff⁴ variables \widetilde{X}^m satisfying

$$(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^m)_{swap(\mathcal{C})} \stackrel{d}{=} (\boldsymbol{X}, \widetilde{\boldsymbol{X}}^m).$$

where C is any union of groups at the *m*th layer. 2 Define $(\mathbf{b}^{\star}(\lambda), \widetilde{\mathbf{b}}^{\star}(\lambda))$ via the regularized regression

$$\underset{\boldsymbol{b},\widetilde{\boldsymbol{b}}}{\arg\max} \frac{1}{2} \left\| \boldsymbol{y} - [\boldsymbol{X} \ \widetilde{\boldsymbol{X}}^{m}] \begin{pmatrix} \boldsymbol{b} \\ \widetilde{\boldsymbol{b}} \end{pmatrix} \right\|^{2} + \lambda \left(\sum_{g=1}^{G_{m}} \ell_{g}^{m}(\boldsymbol{b}_{\mathcal{A}_{g}^{m}}) + \sum_{g=1}^{G_{m}} \ell_{g}^{m}(\widetilde{\boldsymbol{b}}_{\mathcal{A}_{g}^{m}}) \right) + \sum_{g=1}^{G_{m}} \ell_{g}^{m}(\widetilde{\boldsymbol{b}}_{\mathcal{A}_{g}^{m}}) \right) + \sum_{g=1}^{G_{m}} \ell_{g}^{m}(\widetilde{\boldsymbol{b}}_{\mathcal{A}_{g}^{m}}) = 0$$

S Let $Z_g^m(\widetilde{Z}_g^m)$ be first entry times of each (knockoff) group onto the regularization path.

⁴Barber and Dai, 2016

① First, construct group knockoff⁴ variables $\widetilde{\mathbf{X}}^m$ satisfying

$$(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^m)_{swap(\mathcal{C})} \stackrel{d}{=} (\boldsymbol{X}, \widetilde{\boldsymbol{X}}^m).$$

where C is any union of groups at the *m*th layer. 2 Define $(\mathbf{b}^*(\lambda), \widetilde{\mathbf{b}}^*(\lambda))$ via the regularized regression

$$\underset{\boldsymbol{b},\widetilde{\boldsymbol{b}}}{\arg\max} \frac{1}{2} \left\| \boldsymbol{y} - [\boldsymbol{X} \ \widetilde{\boldsymbol{X}}^{m}] \begin{pmatrix} \boldsymbol{b} \\ \widetilde{\boldsymbol{b}} \end{pmatrix} \right\|^{2} + \lambda \left(\sum_{g=1}^{G_{m}} \ell_{g}^{m}(\boldsymbol{b}_{\mathcal{A}_{g}^{m}}) + \sum_{g=1}^{G_{m}} \ell_{g}^{m}(\widetilde{\boldsymbol{b}}_{\mathcal{A}_{g}^{m}}) \right),$$

S Let $Z_g^m(\widetilde{Z}_g^m)$ be first entry times of each (knockoff) group onto the regularization path.

$$\textbf{ 4 Let } W_g^m = \max(Z_g^m, \widetilde{Z}_g^m) \cdot \operatorname{sign}(Z_g^m - \widetilde{Z}_g^m)$$

⁴Barber and Dai, 2016

Data: X, y, groupings $\{\mathcal{A}_g^m\}_{g,m}$, FDR target levels q_1, \ldots, q_M

Data: X, y, groupings $\{\mathcal{A}_g^m\}_{g,m}$, FDR target levels q_1, \ldots, q_M

- 1 for m = 1 to M do
- 2 Construct group knockoff variables \widetilde{X}^m ;
- 3 Construct group knockoff statistics

$$\boldsymbol{W}^{m} = (W_{1}^{m}, \ldots, W_{G_{m}}^{m}) = w^{m}([\boldsymbol{X} \ \boldsymbol{\widetilde{X}}^{m}], \boldsymbol{y});$$

4 end

Data: X, y, groupings $\{A_g^m\}_{g,m}$, FDR target levels q_1, \ldots, q_M for m = 1 to M do

- 2 Construct group knockoff variables \widetilde{X}^m ;
- 3 Construct group knockoff statistics

$$\boldsymbol{W}^m = (W^m_1, \ldots, W^m_{\mathcal{G}_m}) = w^m([\boldsymbol{X} \ \widetilde{\boldsymbol{X}}^m], \boldsymbol{y});$$

4 end

5 For
$$\boldsymbol{t} = (t_1, \ldots, t_M)$$
, define $\mathcal{S}(\boldsymbol{t}) = \{j : W_{g(j,m)}^m \geq t_m \; \forall m\};$

Data: X, y, groupings $\{\mathcal{A}_{g}^{m}\}_{g,m}$, FDR target levels q_{1}, \ldots, q_{M} 1 for m = 1 to M do 2 Construct group knockoff variables \widetilde{X}^{m} ; 3 Construct group knockoff statistics $W^{m} = (W_{1}^{m}, \ldots, W_{G_{m}}^{m}) = w^{m}([X \ \widetilde{X}^{m}], y);$ 4 end 5 For $t = (t_{1}, \ldots, t_{M})$, define $S(t) = \{j : W_{g(j,m)}^{m} \ge t_{m} \forall m\};$ 6 For each m, define $\widehat{FDP}_{m}(t) = \frac{1 + |\{g : W_{g}^{m} \le -t_{m}\}|}{|S_{m}(t)|};$

Data: X, y, groupings $\{\mathcal{A}_{\sigma}^{m}\}_{g,m}$, FDR target levels q_1, \ldots, q_M for m = 1 to M do Construct group knockoff variables X^m ; 2 Construct group knockoff statistics 3 $\boldsymbol{W}^{m} = (W_{1}^{m}, \ldots, W_{C}^{m}) = w^{m}([\boldsymbol{X} \ \boldsymbol{\widetilde{X}}^{m}], \boldsymbol{y});$ 4 end 5 For $\mathbf{t} = (t_1, \ldots, t_M)$, define $\mathcal{S}(\mathbf{t}) = \{j : W^m_{g(j,m)} \ge t_m \ \forall m\};$ 6 For each *m*, define $\widehat{\text{FDP}}_m(t) = \frac{1 + |\{g : W_g^m \leq -t_m\}|}{|\mathcal{S}_m(t)|};$ 7 Find $\mathbf{t}^* = \min\{\mathbf{t} : FDP_m(\mathbf{t}) < q_m \forall m\};$ **Result:** Selection set $S = S(t^*)$.

Methodology

Multilayer FDR control

Theorem

For any valid construction of group knockoff statistics, MKF satisfies

 $FDR_m \leq c \cdot q_m$,

where c = 1.93.

Generality of MKF procedure and theoretical result

Statistics \boldsymbol{W}^m can have arbitrary dependencies across layers.

Pay constant factor c in theory but not in practice.

Section 4

Results on simulated and real data

Numerical simulation setup

- *n* = 4500, *p* = 2000
- X generated row-wise from AR(1) process with correlation ρ
- y generated from low-dimensional linear model:

$$y = X\beta + \epsilon$$

- Ground truth ${\boldsymbol{\beta}}$ has 75 non-null elements
- M = 2, with singleton layer and group layer
- 200 groups of size 10 each

_

Methodology

Methods compared

Method	Multilayer?	Туре
Multilayer knockoff filter (MKF)	Yes	Knockoffs
Knockoff filter (KF)	No	Knockoffs
p-filter (PF)	Yes	p-values
Benjamini-Hochberg (BH)	No	p-values

Method - MKF - KF - PF - BH

Method - MKF - KF - PF - BH

• MKF controls both FDRs

Method - MKF - KF - PF - BH

- MKF controls both FDRs
- Single-layer methods lose group FDR control

Method - MKF - KF - PF - BH

- MKF controls both FDRs
- Single-layer methods lose group FDR control
- Knockoff methods more powerful than p-value methods

Method - MKF - KF - PF - BH

- MKF controls both FDRs
- Single-layer methods lose group FDR control
- Knockoff methods more powerful than p-value methods
- MKF has comparable power to KF

Resequencing data for HDL cholesterol⁵

Data.

- *n* = 5335 individuals
- p = 768 genetic variants
- *G* = 85 genes

Methods compared.

- MKF with $q_{\text{SNP}} = q_{\text{gene}} = 0.1$.
- KF with $q_{\text{SNP}} = 0.1$.

⁵Originally analyzed in Service et. al. '14

Methodology

Results on a genetic dataset

Removed four false positive genes at the cost of one false negative.

Conclusions

• For reproducibility, FDR guarantees should be provided at each layer of interpretation.

Conclusions

- For reproducibility, FDR guarantees should be provided at each layer of interpretation.
- The multilayer knockoff filter makes this possible without much power loss.

Conclusions

- For reproducibility, FDR guarantees should be provided at each layer of interpretation.
- The multilayer knockoff filter makes this possible without much power loss.
- Future work includes extension to multi-task regression and application to genome-scale data sets.

Building blocks

Methodology

Acknowledgements

Chiara Sabatti

Emmanuel Candès

David Siegmund

