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Introduction Building blocks Methodology Results

Section 1

Model selection at multiple resolutions
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Genetic association studies

Data:

• Phenotype measurements y ∈ Rn.

• Genotype measurements X ∈ Rn×p.

Scientific question:

• Which single nucleotide polymorphisms (SNPs) are associated
to the phenotype?
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A typical GWAS output table

Figure: Source: Harold et al. Nature Genetics 41.10 (2009): 1088.

We have discoveries at both the SNP and gene levels. ⇒
We seek to control both corresponding FDRs.
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Introduction Building blocks Methodology Results

Model selection at multiple layers

• Outcome variable y and predictors X1, . . . ,Xp.

• Base-level hypotheses H1, . . . ,Hp, where

Hj : y⊥⊥Xj |X−j .

• For each m = 1, . . . ,M, partition hypotheses
into disjoint groups Am

g :

{1, . . . , p} =
Gm⋃
g=1

Am
g .

• Selection set S induces selections at each layer:

Sm = {g = 1, . . . ,Gm : Am
g intersects S}.
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Multilayer FDR control1

Definition

A model selection procedure obeys multilayer FDR control at
target levels q1, . . . , qM if

FDRm = E
[
|Sm ∩Hm

0 |
|Sm|

]
≤ qm for all m.

1Barber and Ramdas ‘15
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Section 2

Building blocks: p-filter and knockoff filter
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p-filter2

If p-values for base-level hypotheses
are available...

1 Get group p-values using Simes.

2 Introduce thresholds
t = (t1, . . . , tM).

3 Select hypotheses S(t) passing
thresholds at all layers.

4 Choose

t∗ = max{t : F̂DPm(t) ≤ qm ∀m}.

2Barber and Ramdas ‘15
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Knockoff filter3

A model selection procedure bypassing the construction of p-values.

1 Construct “knockoff variables” X̃ to use as controls.

2 Create statistics W = (W1, . . . ,Wp), where Wj quantifies

how much more “significant” Xj is than X̃j .

3 Consider S(t) = {j : Wj ≥ t}.
4 Select t = min{t : F̂DP(t) ≤ q}.

3Barber and Candes ‘15
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Section 3

Multilayer knockoff filter
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A synthesis of the two approaches

I propose the multilayer knockoff filter (MKF), which leverages

• The multilayer testing framework of the p-filter;

• Test statistics for model selection from the knockoff filter.
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Constructing knockoff statistics for groups at each layer

1 First, construct group knockoff4 variables X̃m satisfying

(X , X̃m)swap(C)
d
= (X , X̃m).

where C is any union of groups at the mth layer.

2 Define (b?(λ), b̃?(λ)) via the regularized regression

arg max
b,b̃

1

2

∥∥∥∥y − [X X̃m]

(
b

b̃

)∥∥∥∥2+λ

 Gm∑
g=1

`mg (bAm
g

) +
Gm∑
g=1

`mg (b̃Am
g

)

 ,

3 Let Zm
g (Z̃m

g ) be first entry times of each (knockoff) group
onto the regularization path.

4 Let Wm
g = max(Zm

g , Z̃
m
g ) · sign(Zm

g − Z̃m
g ).

4Barber and Dai, 2016
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Multilayer Knockoff Filter

Data: X , y , groupings {Am
g }g ,m, FDR target levels q1, . . . , qM

1 for m = 1 to M do

2 Construct group knockoff variables X̃m;
3 Construct group knockoff statistics

Wm = (Wm
1 , . . . ,W

m
Gm

) = wm([X X̃m], y);

4 end
5 For t = (t1, . . . , tM), define S(t) = {j : Wm

g(j ,m) ≥ tm ∀m};

6 For each m, define F̂DPm(t) =
1 + |{g : Wm

g ≤ −tm}|
|Sm(t)|

;

7 Find t∗ = min{t : F̂DPm(t) ≤ qm ∀m};
Result: Selection set S = S(t∗).
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Multilayer Knockoff Filter
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Multilayer FDR control

Theorem

For any valid construction of group knockoff statistics, MKF
satisfies

FDRm ≤ c · qm,

where c = 1.93.
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Generality of MKF procedure and theoretical result

Statistics Wm can have arbitrary dependencies across layers.

Pay constant factor c in theory but not in practice.
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Section 4

Results on simulated and real data
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Numerical simulation setup

• n = 4500, p = 2000

• X generated row-wise from AR(1) process with correlation ρ

• y generated from low-dimensional linear model:

y = Xβ + ε

• Ground truth β has 75 non-null elements

• M = 2, with singleton layer and group layer

• 200 groups of size 10 each

24 / 30



Introduction Building blocks Methodology Results

Methods compared

Method Multilayer? Type
Multilayer knockoff filter (MKF) Yes Knockoffs
Knockoff filter (KF) No Knockoffs
p-filter (PF) Yes p-values
Benjamini-Hochberg (BH) No p-values

25 / 30
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Results

• MKF controls both FDRs
• Single-layer methods lose group FDR control
• Knockoff methods more powerful than p-value methods
• MKF has comparable power to KF
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Resequencing data for HDL cholesterol5

Data.

• n = 5335 individuals

• p = 768 genetic variants

• G = 85 genes

Methods compared.

• MKF with qSNP = qgene = 0.1.

• KF with qSNP = 0.1.

5Originally analyzed in Service et. al. ‘14
27 / 30
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Results on a genetic dataset

Gene Method
ABCA1 KF, MKF
CETP KF, MKF
GALNT2 KF, MKF
LIPC KF, MKF
LPL KF, MKF
PTPRJ KF, MKF
APOA5 KF
NLRC5 KF
SLC12A3 KF
DYNC2LI1 KF
SPI1 KF

Removed four false positive genes at the cost of one false negative.
28 / 30
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Conclusions

• For reproducibility, FDR guarantees should be provided at
each layer of interpretation.

• The multilayer knockoff filter makes this possible without
much power loss.

• Future work includes extension to multi-task regression and
application to genome-scale data sets.
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