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Genome-wide association studies

Genotypes X1, . . . , Xp

at p SNPs and trait Y
measured for n individuals.

Goal: find a set of SNPs
associated with the trait.

(Source: Google)

UK Biobank data: p ≈ n ≈ 500,000.

Knockoffs (Barber and Candès, 2015), a variable selection method
with FDR control, recently applied to GWAS (Sesia et al., 2019).
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Step 1: Compute knockoff statistic for each SNP

1. Generate synthetic negative control SNPs (knockoffs).

2. Apply lasso to all original and knockoff SNPs.

3. For SNP k, define knockoff statistic

Wk = |β̂k| − |β̂k+p|.
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Knockoff statistics for platelet count, UKBB data (Sesia et al., 2019)
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Step 2: Find the threshold for FDR control

R(t) = {k : Wk ≥ t}; F̂DP(t) =
1 + |{k : Wk ≤ −t}|

|R(t)|
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|R(t∗)| = 1460 SNPs associated with platelet count at q = 0.1.
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Next step: Biological interpretation of findings
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Gene Ontology enrichment analysis (McLean et al., 2010)

Enrichment : freq. of
annotation near all
discovered SNPs.

Knockoffs SNPs have
enrichment 2.3 for
blood coagulation. 0.00
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For a factor of 4.5, can move from bounding FDPon average at
one point to bounding it with 95% confidence at all points.
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Gene Ontology enrichment analysis (McLean et al., 2010)

Enrichment decreases
with rejection set size.

Desirable to explore
along knockoffs path.
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Simultaneous FDP upper bound permits exploration

FDP(t) =

− log(α)

log(2− α)
· F̂DP(t)

Theorem (KR ‘19).
With prob. 1− α,
FDP(t) ≤ FDP(t) ∀t.

Simultaneous

Closed form

Finite sample
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A glimpse of the proof

We have

FDP(t)

F̂DP(t)
≤ |{null k : |Wk| ≥ t, sign(Wk) = “ + ”}|

1 + |{null k : |Wk| ≥ t, sign(Wk) = “− ”}|
.

Knockoffs FDR proof uses backward martingale to show

E

[
FDP(t∗)

F̂DP(t∗)

]
≤ 1.

Our proof uses forward martingale to show

P

[
sup
t≥0

FDP(t)

F̂DP(t)
≥ x

]
≤ exp(−xθx); θx ≈ log(2).
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Other FDP bounds of this type

General idea: Repurpose path constructions and FDP estimates
from existing FDR procedures.

We prove similar bounds in the following settings:

I hypotheses ordered by p-value (R(t) = {k : pk ≤ t});

FDP(t) =
− log(α)

log(1− log(α))
· 1 +m · t
|R(t)|

;

I hypotheses have a priori ordering;

I hypothesis order determined interactively;

I hypotheses arrive in an online fashion.

Results require p-value independence, but some robustness to
correlation observed in simulations.
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Prior work on simultaneous inference and exploration

Multiple testing setting:

I Goeman and Solari (2011)

I Blanchard, Neuvial and Roquain (2017)

I Rosenblatt, Finos, Weeda, Solari, and Goeman (2018)

Regression setting:

I Berk, Brown, Buja, Zhang, and Zhao (2013).

I Bachoc, Preinerstorfer, and Steinberger (2016)

I Kuchibhotla, Brown, Buja, George, and Zhao (2018)
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Conclusion

Simultaneous high-probability FDP bounds for nested
sequences of rejection sets.

I Our bounds are finite sample and closed form.

I We add to growing literature on simultaneous inference,
broadening its scope to include variety of testing settings.

I Link between simultaneous inference and FDR literature.
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Thank you!
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